Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 814
Filter
2.
Microbiol Spectr ; 11(3): e0330222, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-20245196

ABSTRACT

Antarctica is a unique environment due to its extreme meteorological and geological conditions. In addition to this, its relative isolation from human influences has kept it undisturbed. This renders our limited understanding of its fauna and its associated microbial and viral communities a relevant knowledge gap to fill. This includes members of the order Charadriiformes such as snowy sheathbills. They are opportunistic predator/scavenger birds distributed on Antarctic and sub-Antarctic islands that are in frequent contact with other bird and mammal species. This makes them an interesting species for surveillance studies due to their high potential for the acquisition and transport of viruses. In this study, we performed whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from two locations, the Antarctic Peninsula and South Shetland. Our results suggest the potential role of this species as a sentinel for this region. We highlight the discovery of two human viruses, a member of the genus Sapovirus GII and a gammaherpesvirus, and a virus previously described in marine mammals. Here, we provide insight into a complex ecological picture. These data highlight the surveillance opportunities provided by Antarctic scavenger birds. IMPORTANCE This article describes whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from the Antarctic Peninsula and South Shetland. Our results suggest an important role of this species as a sentinel for this region. This species' RNA virome showcased a diversity of viruses likely tied to its interactions with assorted Antarctic fauna. We highlight the discovery of two viruses of likely human origin, one with an intestinal impact and another with oncogenic potential. Analysis of this data set detected a variety of viruses tied to various sources (from crustaceans to nonhuman mammals), depicting a complex viral landscape for this scavenger species.


Subject(s)
Charadriiformes , Expeditions , Viruses , Animals , Humans , Antarctic Regions , Virome , Prospective Studies , Birds , Viruses/genetics , Phylogeny , Mammals
3.
Nucleus ; 14(1): 2216560, 2023 12.
Article in English | MEDLINE | ID: covidwho-20244882

ABSTRACT

Molecular mimicry is a commonly used mechanism by viruses to manipulate host cellular machinery and coordinate their life cycles. While histone mimicry is well studied, viruses also employ other mimicry strategies to affect chromatin dynamics. However, the relationship between viral molecular mimicry and host chromatin regulation is not well understood. This review summarizes recent advances in histone mimicry and explores how viral molecular mimicry influences chromatin dynamics. We also discuss how viral proteins interact with both intact and partially unfolded nucleosomes and compare the distinct mechanisms governing chromatin tethering. Finally, we address the role of viral molecular mimicry in regulating chromatin dynamics. This review provides new insights into viral molecular mimicry and its impact on host chromatin dynamics, paving the way for the development of novel antiviral strategies.


Subject(s)
Chromatin , Viruses , Chromatin/metabolism , Histones/metabolism , Molecular Mimicry , Viruses/metabolism
4.
Viruses ; 15(5)2023 05 17.
Article in English | MEDLINE | ID: covidwho-20244232

ABSTRACT

Insect cell expression systems are increasingly being used in the medical industry to develop vaccines against diseases such as COVID-19. However, viral infections are common in these systems, making it necessary to thoroughly characterize the viruses present. One such virus is Bombyx mori latent virus (BmLV), which is known to be specific to Bombyx mori and to have low pathogenicity. However, there has been little research on the tropism and virulence of BmLV. In this study, we examined the genomic diversity of BmLV and identified a variant that persistently infects Trichoplusia ni-derived High Five cells. We also assessed the pathogenicity of this variant and its effects on host responses using both in vivo and in vitro systems. Our results showed that this BmLV variant causes acute infections with strong cytopathic effects in both systems. Furthermore, we characterized the RNAi-based immune response in the T. ni cell line and in Helicoverpa armigera animals by assessing the regulation of RNAi-related genes and profiling the generated viral small RNAs. Overall, our findings shed light on the prevalence and infectious properties of BmLV. We also discuss the potential impact of virus genomic diversity on experimental outcomes, which can help interpret past and future research results.


Subject(s)
Bombyx , COVID-19 , Moths , Tymoviridae , Viruses , Animals , COVID-19/genetics , Insecta , RNA Interference
5.
PLoS Comput Biol ; 19(5): e1011173, 2023 May.
Article in English | MEDLINE | ID: covidwho-20243443

ABSTRACT

Viruses evolve in infected host populations, and host population dynamics affect viral evolution. RNA viruses with a short duration of infection and a high peak viral load, such as SARS-CoV-2, are maintained in human populations. By contrast, RNA viruses characterized by a long infection duration and a low peak viral load (e.g., borna disease virus) can be maintained in nonhuman populations, and the process of the evolution of persistent viruses has rarely been explored. Here, using a multi-level modeling approach including both individual-level virus infection dynamics and population-scale transmission, we consider virus evolution based on the host environment, specifically, the effect of the contact history of infected hosts. We found that, with a highly dense contact history, viruses with a high virus production rate but low accuracy are likely to be optimal, resulting in a short infectious period with a high peak viral load. In contrast, with a low-density contact history, viral evolution is toward low virus production but high accuracy, resulting in long infection durations with low peak viral load. Our study sheds light on the origin of persistent viruses and why acute viral infections but not persistent virus infection tends to prevail in human society.


Subject(s)
COVID-19 , Virus Diseases , Viruses , Animals , Humans , SARS-CoV-2/genetics , Viruses/genetics
6.
Sensors (Basel) ; 23(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20242697

ABSTRACT

Viral infections can pose a major threat to public health by causing serious illness, leading to pandemics, and burdening healthcare systems. The global spread of such infections causes disruptions to every aspect of life including business, education, and social life. Fast and accurate diagnosis of viral infections has significant implications for saving lives, preventing the spread of the diseases, and minimizing social and economic damages. Polymerase chain reaction (PCR)-based techniques are commonly used to detect viruses in the clinic. However, PCR has several drawbacks, as highlighted during the recent COVID-19 pandemic, such as long processing times and the requirement for sophisticated laboratory instruments. Therefore, there is an urgent need for fast and accurate techniques for virus detection. For this purpose, a variety of biosensor systems are being developed to provide rapid, sensitive, and high-throughput viral diagnostic platforms, enabling quick diagnosis and efficient control of the virus's spread. Optical devices, in particular, are of great interest due to their advantages such as high sensitivity and direct readout. The current review discusses solid-phase optical sensing techniques for virus detection, including fluorescence-based sensors, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), optical resonators, and interferometry-based platforms. Then, we focus on an interferometric biosensor developed by our group, the single-particle interferometric reflectance imaging sensor (SP-IRIS), which has the capability to visualize single nanoparticles, to demonstrate its application for digital virus detection.


Subject(s)
Biosensing Techniques , COVID-19 , Viruses , Humans , COVID-19/diagnosis , Pandemics , Biosensing Techniques/methods , Surface Plasmon Resonance/methods
7.
New Microbiol ; 46(2): 161-169, 2023 May.
Article in English | MEDLINE | ID: covidwho-20235653

ABSTRACT

Ultraviolet-C (UVC) has been used to cause virus inactivation. The virucidal activity of three UV light lamps [UVC high frequencies (HF), UVC+B LED and UVC+A LED] was evaluated against the enveloped feline coronavirus (FCoVII), a surrogate model of SARS-CoV-2, the enveloped vesicular stomatitis virus (VSV), and the naked encephalomyocarditis virus (EMCV). Virucidal assays were performed at different time points of UV-light exposure (i.e., 5, 30 minutes and 1, 6, and 8 hours), placing each virus 180 cm below the perpendicular irradiation of the lamp and 1 and 2 meters from the perpendicular axis. We found that the UVC HF lamp had virucidal effects (≥96.8% of virus inactivation) against FCoVII, VSV and EMCV after 5 minutes of irradiation at each distance analyzed. Moreover, the UVC+B LED lamp had the highest inhibitory effects on FCoVII and VSV infectivity (≥99% of virus inactivation) when these viruses were settled below the perpendicular axis of the lamp for 5 minutes. Conversely, the UVC+A LED lamp was the least effective, achieving ≥85.9% inactivation of enveloped RNA viruses after 8 hours of UV exposure. Overall, UV light lamps, and in particular UVC HF and UVC+B LED ones, had a rapid and strong virucidal activity against distinct RNA viruses, including coronaviruses.


Subject(s)
COVID-19 , Viruses , Humans , Ultraviolet Rays , SARS-CoV-2 , Disinfection
8.
Emerg Infect Dis ; 29(5): 1051-1054, 2023 05.
Article in English | MEDLINE | ID: covidwho-20242064

ABSTRACT

Hepatitis of undetermined origin can be caused by a wide variety of pathogens, sometimes emerging pathogens. We report the discovery, by means of routine shotgun metagenomics, of a new virus belonging to the family Circoviridae, genus Circovirus, in a patient in France who had acute hepatitis of unknown origin.


Subject(s)
Circoviridae Infections , Circovirus , Hepatitis A , Hepatitis , Viruses , Humans , Circoviridae Infections/diagnosis , Circovirus/genetics , France/epidemiology , Metagenome , Immunocompromised Host
9.
Expert Rev Mol Med ; 25: e19, 2023 05 10.
Article in English | MEDLINE | ID: covidwho-20241455

ABSTRACT

A period of about a decade has been estimated to pass for the emergence of a new infectious strain of a virus that may lead to the occurrence of a pandemic one. It is now suggested that the variants of the 1918 H1N1 and coronavirus disease-19 pandemics could have existed in humans after the initial cross-species introduction to humans and underwent multiple low-level seasonal epidemics before the occurrence of their outbreaks. They share similarities in the continuation, widespreadness due to high transmissibility, high fatality rate and clinical symptoms. They are assumed to share a similar principle of a zoonotic source and a cross-species pathway for transmission. They show some similarities in their pathogenesis with other enveloped viruses: Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), human immunodeficiency virus, Ebola, Lassa and measles viruses. The highly pathogenic nature of these viruses and their genetic variants may depend on their binding affinity for host cell receptors, whereby they efficiently circumvent or block host cell immune responses triggered by cytokines (interferon). High transmission rates and viral pathogenicity are attributed to glycan moieties that facilitate virus binding to host multiple receptors and cell entry, thereby helping viruses to evade immune recognition and response. Also, mucosa glycotopes are a matter of concern that play as primary sites for virus attachment and body entry. Finding general lectins or ligands that block the viral-host receptors interaction or identifying individual glycotopes is the therapeutic and prognosis topic that demands the main focus.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Viruses , Humans , Pandemics , Polysaccharides
10.
Nat Commun ; 14(1): 3105, 2023 05 29.
Article in English | MEDLINE | ID: covidwho-20241073

ABSTRACT

Epidemiological models are commonly fit to case and pathogen sequence data to estimate parameters and to infer unobserved disease dynamics. Here, we present an inference approach based on sequence data that is well suited for model fitting early on during the expansion of a viral lineage. Our approach relies on a trajectory of segregating sites to infer epidemiological parameters within a Sequential Monte Carlo framework. Using simulated data, we first show that our approach accurately recovers key epidemiological quantities under a single-introduction scenario. We then apply our approach to SARS-CoV-2 sequence data from France, estimating a basic reproduction number of approximately 2.3-2.7 under an epidemiological model that allows for multiple introductions. Our approach presented here indicates that inference approaches that rely on simple population genetic summary statistics can be informative of epidemiological parameters and can be used for reconstructing infectious disease dynamics during the early expansion of a viral lineage.


Subject(s)
COVID-19 , Communicable Diseases , Viruses , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Viruses/genetics , Basic Reproduction Number , Bayes Theorem
11.
Ann Saudi Med ; 43(3): 143-153, 2023.
Article in English | MEDLINE | ID: covidwho-20237979

ABSTRACT

BACKGROUND: Non-pharmaceutical interventions (NPIs) applied to limit the SARS-CoV-2 pandemic also affect the circulation and seasonal characteristics of other respiratory viruses. OBJECTIVES: Assess the impact of NPIs on the spread and seasonal characteristics of non-SARS-CoV-2 respiratory viruses and examine viral respiratory co-infections. DESIGN: Retrospective cohort SETTING: Single center in Turkey. PATIENTS AND METHODS: Syndromic multiplex viral polymerase chain reaction (mPCR) panel results of patients admitted to the Ankara Bilkent City Hospital with symptoms of acute respiratory tract infection between April 1, 2020 and October 30, 2022 were evaluated. Two study periods before and after 1 July 2021, when the restrictions were discontinued, were statistically analyzed and compared to determine the effect of NPIs on circulating respiratory viruses. MAIN OUTCOME MEASURES: Prevalence of respiratory viruses as determined by syndromic mPCR panel. SAMPLE SIZE: 11300 patient samples were evaluated. RESULTS: At least one respiratory tract virus was detected in 6250 (55.3%) patients. Of these, at least one respiratory virus was detected in 5% in the first period (between April 1, 2020 and June 30, 2021, when NPIs were applied), and in 95% in the second period (between July 1, 2021 and October 30, 2022, when NPIs were relaxed). After the removal of NPIs, there was a statistically significant increase in hRV/EV, RSV-A/B, Flu A/H3, hBoV, hMPV, PIV-1, PIV-4, hCoV-OC43, PIV-2 and hCoV-NL63 (P<.05). In the 2020-2021 season, when strict NPIs were applied, all respiratory viruses evaluated did not have the usual seasonal peak and there were no seasonal influenza epidemics during this period. CONCLUSIONS: NPIs resulted in a dramatic decrease in the prevalence of respiratory viruses and notable disruption of seasonal characteristics. LIMITATIONS: Single-center study and retrospective. CONFLICT OF INTEREST: None.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , Pandemics/prevention & control , Turkey/epidemiology , Retrospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Virus Diseases/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control
12.
Viruses ; 15(5)2023 05 02.
Article in English | MEDLINE | ID: covidwho-20237856

ABSTRACT

Virus-like particles (VLPs) have gained a lot of interest within the past two decades. The use of VLP-based vaccines to protect against three infectious agents-hepatitis B virus, human papillomavirus, and hepatitis E virus-has been approved; they are very efficacious and offer long-lasting immune responses. Besides these, VLPs from other viral infectious agents (that infect humans, animals, plants, and bacteria) are under development. These VLPs, especially those from human and animal viruses, serve as stand-alone vaccines to protect against viruses from which the VLPs were derived. Additionally, VLPs, including those derived from plant and bacterial viruses, serve as platforms upon which to display foreign peptide antigens from other infectious agents or metabolic diseases such as cancer, i.e., they can be used to develop chimeric VLPs. The goal of chimeric VLPs is to enhance the immunogenicity of foreign peptides displayed on VLPs and not necessarily the platforms. This review provides a summary of VLP vaccines for human and veterinary use that have been approved and those that are under development. Furthermore, this review summarizes chimeric VLP vaccines that have been developed and tested in pre-clinical studies. Finally, the review concludes with a snapshot of the advantages of VLP-based vaccines such as hybrid/mosaic VLPs over conventional vaccine approaches such as live-attenuated and inactivated vaccines.


Subject(s)
Vaccines, Virus-Like Particle , Viruses , Animals , Humans , Hepatitis B virus , Vaccine Development
13.
RNA Biol ; 20(1): 272-280, 2023 01.
Article in English | MEDLINE | ID: covidwho-20236945

ABSTRACT

RNA interference (RNAi) offers an efficient way to repress genes of interest, and it is widely used in research settings. Clinical applications emerged more recently, with 5 approved siRNAs (the RNA guides of the RNAi effector complex) against human diseases. The development of siRNAs against the SARS-CoV-2 virus could therefore provide the basis of novel COVID-19 treatments, while being easily adaptable to future variants or to other, unrelated viruses. Because the biochemistry of RNAi is very precisely described, it is now possible to design siRNAs with high predicted activity and specificity using only computational tools. While previous siRNA design algorithms tended to rely on simplistic strategies (raising fully complementary siRNAs against targets of interest), our approach uses the most up-to-date mechanistic description of RNAi to allow mismatches at tolerable positions and to force them at beneficial positions, while optimizing siRNA duplex asymmetry. Our pipeline proposes 8 siRNAs against SARS-CoV-2, and ex vivo assessment confirms the high antiviral activity of 6 out of 8 siRNAs, also achieving excellent variant coverage (with several 3-siRNA combinations recognizing each correctly-sequenced variant as of September2022). Our approach is easily generalizable to other viruses as long as avariant genome database is available. With siRNA delivery procedures being currently improved, RNAi could therefore become an efficient and versatile antiviral therapeutic strategy.


Subject(s)
COVID-19 , Viruses , Humans , RNA, Small Interfering/genetics , SARS-CoV-2/genetics , COVID-19/genetics , RNA Interference , Viruses/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
14.
PLoS Biol ; 21(5): e3002130, 2023 05.
Article in English | MEDLINE | ID: covidwho-20236168

ABSTRACT

Viruses, the diseases they can trigger, and the possible associated societal disaster represent different entities. To engage with the complexities of viral pandemics, we need to recognize each entity by using a distinctive name.


Subject(s)
Disasters , Viruses , Pandemics
15.
Pediatr Infect Dis J ; 42(6): 443-448, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20234768

ABSTRACT

BACKGROUND AND OBJECTIVE: Childcare attendance is a common risk factor for acute respiratory illness (ARI) in young children. Our goal was to better understand the specific respiratory viruses that predominate in childcare, which may support the development of tailored illness prevention and intervention strategies in childcare settings. METHODS: Using data from a prospective household cohort of ARI surveillance, we assessed specimen from 1418 ARIs reported by 359 childcare-aged children over 6 study seasons (2012/2013 through 2017/2018). Respiratory swabs were tested by polymerase chain reaction for 9 respiratory viruses. A mixed-effect logistic regression model was used to compare odds of various viral detection outcomes. The Shannon's Diversity index was used to compare the richness (ie, number of species) and diversity (ie, relative species abundance) associated with respiratory viruses detected in both groups. RESULTS: At least 1 virus was detected in 75.5% of childcare-associated ARIs and in 80.1% of homecare ARIs. Compared with illnesses among homecare children, childcare illnesses were associated with significantly higher odds of detected adenovirus (odds ratio = 1.86, 95% confidence interval = 1.05-3.28) and human metapneumovirus (odds ratio = 1.76, 95% confidence interval = 1.03-3.0). The pool of viruses associated with childcare ARI was found to be significantly richer and more diverse than that of viruses associated with homecare ARI ( P < 0.0001). CONCLUSIONS: Children attending childcare experience a higher risk of adenovirus and human metapneumovirus infection and are regularly exposed to a rich and diverse pool of respiratory viruses in childcare environments. Our results underscore the necessity of thorough and multifaceted viral prevention strategies in childcare settings.


Subject(s)
Respiratory Tract Infections , Virus Diseases , Viruses , Child , Humans , Infant , Child, Preschool , Aged , Prospective Studies , Child Care , Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Adenoviridae
16.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: covidwho-20232730

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Viruses , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Zika Virus Infection/drug therapy , Zika Virus/genetics , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , SARS-CoV-2 , Chikungunya virus/genetics , Peptides/pharmacology , Peptides/therapeutic use
17.
Environ Int ; 177: 108022, 2023 07.
Article in English | MEDLINE | ID: covidwho-20231002

ABSTRACT

A non-filter virus inactivation unit was developed that can control the irradiation dose of aerosolized viruses by controlling the lighting pattern of a 280 nm deep-UV (DUV)-LED and the air flowrate. In this study, the inactivation properties of aerosolized SARS-CoV-2 were quantitatively evaluated by controlling the irradiation dose to the virus inside the inactivation unit. The RNA concentration of SARS-CoV-2 remained constant when the total irradiation dose of DUV irradiation to the virus exceeded 16.5 mJ/cm2. This observation suggests that RNA damage may occur in regions below the detection threshold of RT-qPCR assay. However, when the total irradiation dose was less than 16.5 mJ/cm2, the RNA concentration monotonically increased with a decreasing LED irradiation dose. However, the nucleocapsid protein concentration of SARS-CoV-2 was not predominantly dependent on the LED irradiation dose. The plaque assay showed that 99.16% of the virus was inactivated at 8.1 mJ/cm2 of irradiation, and no virus was detected at 12.2 mJ/cm2 of irradiation, resulting in a 99.89% virus inactivation rate. Thus, an irradiation dose of 23% of the maximal irradiation capacity of the virus inactivation unit can activate more than 99% of SARS-CoV-2. These findings are expected to enhance versatility in various applications. The downsizing achieved in our study renders the technology apt for installation in narrow spaces, while the enhanced flowrates establish its viability for implementation in larger facilities.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2 , Disinfection/methods , Ultraviolet Rays , RNA
18.
Viruses ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: covidwho-20230945

ABSTRACT

Base pairing based on hydrogen bonding has, since its inception, been crucial in the antiviral activity of arabinosyladenine, 2'-deoxyuridines (i.e., IDU, TFT, BVDU), acyclic nucleoside analogues (i.e., acyclovir) and nucleoside reverse transcriptase inhibitors (NRTIs). Base pairing based on hydrogen bonding also plays a key role in the mechanism of action of various acyclic nucleoside phosphonates (ANPs) such as adefovir, tenofovir, cidofovir and O-DAPYs, thus explaining their activity against a wide array of DNA viruses (human hepatitis B virus (HBV), human immunodeficiency (HIV) and human herpes viruses (i.e., human cytomegalovirus)). Hydrogen bonding (base pairing) also seems to be involved in the inhibitory activity of Cf1743 (and its prodrug FV-100) against varicella-zoster virus (VZV) and in the activity of sofosbuvir against hepatitis C virus and that of remdesivir against SARS-CoV-2 (COVID-19). Hydrogen bonding (base pairing) may also explain the broad-spectrum antiviral effects of ribavirin and favipiravir. This may lead to lethal mutagenesis (error catastrophe), as has been demonstrated with molnutegravir in its activity against SARS-CoV-2.


Subject(s)
COVID-19 , Viruses , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Nucleosides/pharmacology , Base Pairing , Hydrogen Bonding , SARS-CoV-2
19.
Sci Total Environ ; 892: 164495, 2023 Sep 20.
Article in English | MEDLINE | ID: covidwho-2328312

ABSTRACT

Wastewater-based surveillance can be a valuable tool to monitor viral circulation and serve as an early warning system. For respiratory viruses that share similar clinical symptoms, namely SARS-CoV-2, influenza, and respiratory syncytial virus (RSV), identification in wastewater may allow differentiation between seasonal outbreaks and COVID-19 peaks. In this study, to monitor these viruses as well as standard indicators of fecal contamination, a weekly sampling campaign was carried out for 15 months (from September 2021 to November 2022) in two wastewater treatment plants that serve the entire population of Barcelona (Spain). Samples were concentrated by the aluminum hydroxide adsorption-precipitation method and then analyzed by RNA extraction and RT-qPCR. All samples were positive for SARS-CoV-2, while the positivity rates for influenza virus and RSV were significantly lower (10.65 % for influenza A (IAV), 0.82 % for influenza B (IBV), 37.70 % for RSV-A and 34.43 % for RSV-B). Gene copy concentrations of SARS-CoV-2 were often approximately 1 to 2 logarithmic units higher compared to the other respiratory viruses. Clear peaks of IAV H3:N2 in February and March 2022 and RSV in winter 2021 were observed, which matched the chronological incidence of infections recorded in the Catalan Government clinical database. In conclusion, the data obtained from wastewater surveillance provided new information on the abundance of respiratory viruses in the Barcelona area and correlated favorably with clinical data.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Viruses , Humans , Influenza, Human/epidemiology , Respiratory Syncytial Viruses/genetics , Wastewater , COVID-19/epidemiology , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Respiratory Syncytial Virus Infections/epidemiology
20.
J Water Health ; 21(6): 831-848, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2328019

ABSTRACT

Concentrations of nucleic acids from a range of respiratory viruses in wastewater solids collected from wastewater treatment plants correlate to clinical data on disease occurrence in the community contributing to the wastewater. Viral nucleic acids enter wastewater from excretions deposited in toilets or drains. To relate measured concentrations in wastewater at a treatment plant to the number of community infections, viral nucleic-acid concentrations in human excretions are needed as inputs to a mass balance model. Here, we carried out a systematic review and meta-analysis to characterize the concentrations and presence of influenza A and B, respiratory syncytial virus, metapneumovirus, parainfluenza virus, rhinovirus, and seasonal coronaviruses in stool, urine, mucus, sputum, and saliva. We identified 220 data sets from 50 articles and reported viral concentrations and presence in these excretions. Data were unevenly distributed across virus type (with the most available for influenza) and excretion type (with the most available for respiratory excretions). Most articles only reported the presence or absence of the virus in a cross-sectional study design. There is a need for more concentration data, including longitudinal data, across all respiratory virus and excretion types. Such data would allow quantitatively linking virus wastewater concentrations to numbers of infected individuals.


Subject(s)
Influenza, Human , Nucleic Acids , Viruses , Humans , Wastewater , Cross-Sectional Studies
SELECTION OF CITATIONS
SEARCH DETAIL